Quiz 5: 16.2, 16.3
Show all work clearly. Name any theorems you use. (You may only use theorems from these sections)
(1) Given the vector field $\vec{F}(x, y)=<4 x+5 y, 5 x-y>$ and the path C from $(0,0)$ to $(1,1)$ along the curve.

$$
\left\{\begin{array}{l}
x=t \\
y=\sin \left(\frac{\pi t}{2}\right)
\end{array}\right.
$$

a) Find the potential function $\mathrm{f}(\mathrm{x}, \mathrm{y})$ such that $\vec{F}=\vec{\nabla} f(x, y)$.

(1) Using Fundamental theorem

$$
\begin{aligned}
\int_{c} \vec{F} \cdot d \vec{r} & =f(1,1)-f(0,0) \\
& =13
\end{aligned}
$$

$=\frac{13}{2}$
Note: worth taking times
G to check that
$c(y)=-\frac{1}{2} y^{2}+c$
b) Find $\int_{C} \vec{F} \bullet d \vec{r}$ using two different methods. Explain

